ADAQ27845

-

Joil

- TR-76=0886

AN ACCESS CONTROL FACILITY FOR
PROGRAMMING LANGUAGES

d

k
&
|

Anita K. Jones
Carnegie-Mellon University

Barbarua H. Liskov
Massachusetts Institute of Technology

May 1976

R TR T T

DEPARTMENT DDC
of) PP

AUG B 1976

COMPUTER SCIENCE UlEEEIVE

e

AIR FORCE OFFICE OF SOTENTIFIC RESEARCH (AFSC)

RANSMITTAL T0 DDC
ES?iCiu?i f?;{ sy nas heen reviewed and 1is
T =

meEcved Tom ptelae Llsass AW AFR 190-12 (7b) .
& .'- <
tripution 18 u,limxted

BLOSE
, cal Information Qfficer

W BISTRIBUTION STATEMENT 3
Approved for public mlm‘l ;
Distribution Unlicuted Jd‘p :
Carnegle-NIellon University

fﬁ%ﬂQ}ng*(ﬂddzy/y jﬁ«“\ ﬂ

=

e R gy o = MR S LSS S —- e S S, |
S e i b i W G e = aw 3 -

AN ACCESS CONTROL FACILITY FOR
PROGRAMMING LANGUAGES

Anita K. Jones
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Barbara H. Liskov
Department of Electrizal Engineering
and Computer Ccience
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

May 1976

This research was supported by the National Science Foundation under grants DCR74-21892 and
DCR74-04187. .

BEST
AVAILABLE COPY

YT TR

T .. © o . w

R A R — . e - — T IMST—— TN
T - Se— L <5

_— B . . s = - n e (e

L - R Ty e e ——

- b

ABSTRACT

Controlled sharing of information is needed and desirable for many applications. Access control
mechanisms exist in operating systems to provide such controlled sharing. However, programming
languages currently do not support such a facility. This paper argues that to enhance software
reliability programming languages should support controlled sharing of information; the paper
illustrates 1..w such an access control t;acihty could be incorporated in a programming language.
The mechanism described is suitable for incorporation in ob ject-oriented languages which permit

the definition of abstract data types; it is defined in such a way as to enable compile time checking

of access control.

Keywords and Phrases: access control, data types, type checking, capabilities.

CR Categories: 420, 435

1. INTRODUCTION

One of the most important attributes of a programming language is the way the scope rules of
the language define how data is to be shared among the individual program units (procedures,
blocks, modules) out of which program is construcied. Ordinarily, access to data is provided on
an ail-or-nothing basis: if a module can access some data base at all, then every component of the
data base may be accessed, and every possible type of access (usually just reading and writing) may
be performed . Experience in building large applications, or applications involving sensitive data,
has indicated that sharing of data is greatly enhanced if finer control than all-or-nothing access is
provided. For example, manipulation of the irformation in a data base is much more controlled if
not every program which reads the data base is also permitted to write it. In addition, if some of
the information in a data base is sensitive, then control over which programs can read which

information is also desired.

Current programming languages are deficient in providing mechanisms for controlling the
sharing of information among program units. For example, passing a data base "by value” ensures
that the called procedure may not modify the data base. However, this mechanism does not
provide control over what parts of a data base may be read; in addition, it is so espensive for large
data bases that other parameter passing mechanisms are used instead. Proposals for avoiding the
overhead of call by value while retaining the benefit that the data base cannot be modified (for
example, call by reference, but permitting only read access to the formal parameter) solve the
efficiency problem, but still do not provide for selective reading of the data base. In addition, such

proposals do not provide for the control of selective alteration of the data base.

The thesis of this paper is that programming languages should provide mechanisms for
controlled sharing of data. We define a syntax and semantics for such a mechanism. The
mechanism we will show borrows heavily from work in operating systems, where access control
mechanisms have long been one of the tools useful for realizing controlled sharing of data. In
particular, our mechanism is modaled after the capability protection mechanisms provided by some

operating systems [Sturgis74, Wulf74]

To incorporate an access control mechanism in a programming language, we will choose an
approach that permits programmers to express access control restriccions in terms that are
meaningful to their application domains. We assume that all data are contained in ob jects for
which there exists a set of accesses. Ob jects are those entities, such as data bases, libraries, stacks or
files, which are of interest to programmers. Accesses are limited to those that are meaningful
manipulations of the objects, accesses are the only means for altering an ob ject or extracting
information from it. In some cases, meaningful accesses are the familiar read, write, and, possibly,
execute access. In other cases, the accesses themselves are user-defined, tailored to the abstract
notion the user intends to capture. For example, a file system may distinguish between write access
and append access. In contrast to a write access, an append access is assumed to modify the file,
but not to alter existing content. This permits a user to share a file with others, allowing them to

augment the file by appending to it, but not allowing them the ability to rewrite any portion of it

What is to be gained by incorporating access control into a programming language? We
believe several benefits will accrue. The crucial benefit is enhanced software reliability in that
programs can be written to be well-behaved with respect to the constraints governing sharing of
constraints:

1. It may access only those ob jects which it has a legitimate right to access.
2. It may perform only meaningful accesses to these ob jects.

8. If it is restricted to performing some proper subset of the meaningful accesses to an
ob ject, chis restriction cannot be circumvented.

Access control restrictions are stated in a declarative fashion analogous to type declarations for
variables. They may be viewed similarly as a statement of user intent, »hich may be relied on by

someone reading the program to obtain a better understanding of the . irpose of the progrzm.

In addition access control can be introduced into languages in such a way that the
access-correctness of a program can be checked at compile-time. This will lead to benefits similar

to those derived from compile-time type checking (indeed, the mechanism we provide is a logical

| S

nener D HIRp—_— ST D X e b RO S T ¥

extension of type checking): the assurance that a compiled program is access-correct, and (possibly)
enhanced efficiency over the dynamic mechanisms currently provided by operating systems. Note
that compile time checking of access control is beneficial even if dynamic mechanisms are retained:
access control errors are caught early, and a programmer may be confident that his program will

not fail due to an access-control violation.

The last benefit we wish to point out is that a programmer will be able to express fully in the
language how he intends to make use of the protection facilities of an operating system. At
present, the access control information is expressed separately from the program in some sort of
Job-control language; such a separation increases the difficulty of writing programs for such
systems. In addition, the language permits more precise specification of access requirements on a

program by program basis, not on a user job or job step basis.

i the next section, we describe the kind of programming language we have chosen as a basis
{or Incorporation of an access control mechanism, and define how access control is achieved for
simple, unstructured data ob jects. Section 3 extends the access control mechanism to data structures.
In Section 4 we compare our mechanism with the dynamic mechanism iri the Hydra operating
system [Wulf74, Jones75], this is especially interesting since our mechanism is modeled after
capability protection mechanisms like that provided in Hydra. We conclude in Section 5 with a

discussion of what we have accomplished.

2. THE BASIC MODEL

In this section, we describe the kind of programming language that we have selected as a basis
for incorporation of access control, and then define a notation and set of rules sufficient for
controlling access to simple, unstructured objects. Since our purpose is to illustrate how access
control might be incorporated into a programming language, rather than to define a complete
programming language, we introduce only a minimum of syntax and semantics to express the
access control rules. Our semantic model 1s chosen to have the following characteristics:

I. It is consistent with defining access control in terms meaningful to user applications.
2. Sharing of data ob jects 1s natural and straightforward.

3. It is possible to determine at compile time whether a program obeys the access control
rules, and is thus access-correct. In addition, the decision about whether a program is
access-correct can be made based on only loca! information, similar to the way that
type-checking in a strongly typed language is performed.'

We can develop some intuition about the character of a language into which access control can
be integrated by considering how operating systems provide access control: The data-containing
ob jects to be controlled are uniquely distinguishable (each object has a unique identity). All direct
manipulation of an ob ject is via accesses to it. The accesses to an ob ject must be distinguishable so
that unauthorized accesses can be prevented. For each ob ject there is a set of potentially allowed
accesses; no other accesses can be performed on that object. The potentially allowed accesses
depend on what kind of ob ject is being accessed, and users require the ability to define new kinds

of ob jects suitable to their particular application domains.

Thus, to discuss access control we require a language that permits the writing of programs in
terms of data ob jects and the accesses that are meaningful for them. In particular, languages in
which a datum is viewed as an aggregate of memory cells are not suitable, because of the difficulty

of expressing access control on anything but a cell basis. One class of languages, Including the

I. The question of how static checking interacts with programming power Is addressed In
Section 4.

Wm-mm———-wwv- R S R A g e — P — —. - _ﬂ—m——q-mwm'_,wvwwﬂ.'

TR |

-6 -

languages Simulab? (Dah!72), CLU [Liskov76] and Alphard [(Wulf76), provides a natural
environment in which to embed an access control facility. We will call such languages

b ject-oriented languages.

The suitability of object-oriented languages for embedding access control arises primarily from
the view of data types taken in these languages. A data type is considered to be more than simply
a set of objects or values. A type also specifies a set of operations which provides the means for
manipulating the objects: The operations provide for creating ob jects of the type, for obtaining
information about objects of the type, and for altering ob jects of the type. The operations of a
type correspond very closely (though not identically, as we shall show) to our notion of access, and

access control corresponds to the ability to control the use of the operations.

The user of ob jects of some type is constrained to view those ob jects abstractly in terms of the
type's operations rather than in terms of the ob jects’ representation. In order to define a new type,
a storage representation must be specified for the type's ob jects; however, this 1epresentation can be
manipulated only by the type's operations. Limiting knowledge of the storage representation to just
the operations ensures that those operations compleiely determine the behavior of the type's ob jects

{Liskov76).

In order to accomr. odate access control, we will add ore more component to a type: In
addition to objects and operations, a type also specifies a set of rights. A right is a name that
represents a meaningful manipulation of ob jects of the type; often a right corresponds to the use of
one of the type's operations. The basic idea behind rights is: to legally apply one of the type's
operations, a user must hold appropriate rights to the objects passed to that operation as

parameters.

An example Is given in Figure | for the type, assoclative-memory. Operations for this type
include an operation to create an empty associative-memory of a particular size (makemem), an
operation to add a name-value pair to an assrciative-memory (insert), an operation to change the

value associated with a given name (change), an operaticn to fetch the value assoc_iatéd with a

s

given name (getval), and an operation to remove a riame-value pair (deletej. In order for insert,
change, getval, or delete to be invoked, the invoker must present a right to apply the operation to
the associative-memory parameter; in this particular example, the name of the required right is the
same as the name of the operation. The makemem operation returns all these rights for the
associative-memory ob ject it creates The associative-memory operations also use objects of type
integer. For simplicity we have chosen to let a single right ("use”) control the use of all integer
operations. In general, we can expect some rights to correspond to the use of a single operation,
some to a group of operations (type integer provides a degenerate example of this case), and some

tc a single parameter of an cperation taking more than one ob ject of the type.

type: associative-memory
rights: "insert”, "change”, "getval”, "delete”

cperations:
makemem
input: integer; “use” right comment desired assoc'ative-memory size
returns: associative-memory; "Insert”,"change”,"getval”, "delete” rights are given
insert
input: associative-memory; "insert” right
integer; "use” right comnient the name
integer; "use” right comnient the value
effect: (insert modifies its associative-memory parameter)
change
input: associative-memory; "change” right
integer; "use” right comment the name
integer, “use” right comment the new value
effect: (change modifies its associative memory parameter)
getval
input: associative-memory; “getval” right
integer; "use” right comiment the name
returns: integer; "use” right comment the value
delete
input: associative-memory; "delete” right
integer; "use” right comnment the name
effect: (delete modifies its associative-memory parameter)

Figure 1. The Associative-memory Type.

Types such as associative-memory can be implemented by means of a special kind of program

that defines what the rights and operations are and provides implementations for all of the type's

Ty | P S R p—— i Sess e R T
' 3 i .

-8 - >

operations. We will refer to such a program as a type-inodule 2

Notation and Rules for Access Control

Our notation for access control involves a declaration for each variable of the type of ob ject
that variable may r=ference, and the rights that are available for that ob ject when it is accessed via
the variable. These two pieces of tnformation are captured in the notion of a qualified type. A
qualified type is written

T{rl,...rn}

where T is the name of some type, and {rl,..rn} is a non-empty subset of the rights of T. We refer
to the two parts of a quahfied type as the base type and the rights; If Q Is a qualified type, then
base(Q) is the base cype and rights(Q) is the rights. For example, the following are some of the
qualified types derived from associative-memory

associative-memory {getval}
associative-memory {insert, change}
associative-memory {insert, change, getval, delete}

The final example specifies all the associative-memory rights; a special notation
T{allj

may be used instead of listing all the rights.

Qualified types are used in variable declarations and in formal parameter specifications in
procedure headings. An example of a variable declaration is:
v: associative-memory {insert, change}
The meaning of this declaration Is: v is a variable ‘which. can be used to reference
assoclatlve-memory objects, but only the "insert" and "change” rights may be exercised in

con junction with v.

We view a variable as a pair

2. Type-modules will be discussed later in this section. Type-modules are similar to classes in
Simula, clusters In CLU and forms in Alphard.

R I S R P I - T 1| [T S 1 P S ey e T WS gy m———— e ..

g - b G

{cb ject id, qualhified type}
The object 1d Is a unique name which is interpreted by the underlying addressing mechanism to
select an ob ject. The type of this object Is guaranteed (by the access control rules) to be the base
type of the qualified type of the variable. When a variable is created, its qualified type Is defined
once and for all and can never be altered. However, the ob ject named by a variable (via the ob ject
id) can change by application of the binding operation discussed below. Note that it is possible for
sharing of ob jects to take place, because two variables may contain the same ob ject id. In this case,

the qualified type in the two variables may differ, but the base type is necessarily the same.

A variable is a capabulity in the operating system sense (Denn1s66, Lampsonl, Jones73) The
capability provides the basis for restricting the kinds of manipulation that can be performed on
the ob ject specified by the object id. Intuitively, the restrictions on how an ob ject can be used are
expressed along the path to the object (the path through the object id in the variable). Thus,
using one path rather than another to name an object changes the way the object can be
manipulated. For example, suppose

a. associative-memory{getval, insert]
b: associative-memory{getval}

both name the same object. Using b it is impossible to modify this ob ject, since only the getval

operation can be used; using a, the ob ject may be modified by application of the insert operation.

The notions of variables, ob jects and binding are different from the related notions of value
and assignment which underlie block-structured languages. This difference is illustrated in Figure
2. Figure 2a shows the traditional view of variables and values, in which the value resides in the
variable and a new value can be copied into a variable by means of assignment. Figure 2b
illustrates our semantics: a variable is bound to an object, and a value is contained in an ob ject.
This value may only be accessed or modified by means of one of the operations of the ob ject's
type. Our rule of binding differs from assignment in that it causes sharing of the ob ject involved,
rather than the copying of the value in the object. Furthermore, this sharing is significant since

for some types of ob jects, operations exist to change the vaiue inside of the object. For example,

the associative-memory operations insert, change and delete modify the value inside of an

associative-memory ob ject.

variable
——

value l

Figure 2a. Traditional view of variables and values.

variable

| qualified| ob ject | ob ject

| |
L._lrpe . id |

value

Figure 2b. Model used in this paper.

Figure 2. Comparison of Semantic Models.

Our notion of binding corresponds to assignment involving variables holding (typed)
references to ob jects. Some programming languages are based on a semantic model like curs. The
most widely known of these languages is LISP (McCarthy62);, LISP lists are objects (with
operations car, cdr and cons) and LISP setq is the same as our binding. Our model is 21so used in

SIMULA 67, CLU and Alphard.

We claim that our semantics models very well what is going on in systems where controlled
sharing is of interest. Note that sharing of objects is a fundamental fact in these systems; the
sharing of actual objects (rather than just copies of the values of ob jects) leads both to interesting
behavior (eg., many programs working with the same data base), and the need to exercise some
control over exactly how ihe object should be shared. Protection schemes exist tc provide this

control.

Binding Rule

A single rule, governing the legality o/ binding of ob jects to variables, is sufficient to provide
the required access control and is the basis for determining whether a program is access-correct
(satisfies the sharing constraints discussed in Sectton 1). Binding is the operation that causes a
variable to reference an object (by changing the ob ject id) The effect of binding is creation of a
new access path for the object. Therefore, In order to ensure that a program 1$ access-correct, we
must guarantee that no new rights to access the ob ject are obtained from this new access path. For
example, suppose that x and y are variables, and that X is to be bound to the ob jec currently
bound to y. This new binding should be allowed only if the qualified types of x and y both arise
from the same base type, and if the rights obtainable by accessing the vv ject via variable x do not

exceed the rights obtainable by accessing the ob ject viay.

Ve can formalize this rule as follows. First, we define what it means for one qualified type to
be ;reater than or equal to another. If Q) and Q2 are qualified types, then Q! is greater thap or
equal to Q2, written
Q> Q2

if base(Q)) = base(Q2) and rights(Q)) 2 rights(QQ). Now the rule of binding can be defined:
yeme

where v is a variable and is an expression and

Tv = qualified type of variable v
Te = qualified type of expression e

is legal provided that

Te>Tv
Thus a binding is legal only if the new access path provides at most a subset of the rights
obtainable via the original access path. Note that this rule ensures that a variable will always

reference an ob ject whose type is the base type of the qualified type of the variable.

An expression is either a variable, in which case its qualified type is the same as the qualified

type of the varlable, or it is a procedure invocation. In the former case, we have now defined the

-|2-

ruie of binding (since Te 1s the qualified t ~e of this variable). For example, suppose

a: assoc:ative-memory{getval, insert}
b: associative m. nory{getval)

Then be=a is legal but ae=b is not. This is lustrated in Figure 3. In Figure 3a, an initial
configuration is shown in which a references an associative-memory ob ject @, and b references an
associative-memory ob ject §. Figure 3b shows the result of b= a. Both b and a now reference a.
A new access path {from b to a) has been created as a result of this binding, but no new rights to
a are obtained by it; in fact, the new access path via b has fewer rights to @ than the old access
path. Figure 3b illustrates what would be the result of a e=b. If this binding were allowed, the

new access path from a to 3 would allow more rights than the old one, and therefore the binding

must not be permitted.

la order to understand binding when the righthand side is a procedure invocation, we must
examine the semantics of parameter passing. Our notion of parameter passing is defined in terms

of vinding. A procedure definition has the form

procedure <procname> (<formals specification>)
returns <result specification> =
<body>
end <procnarne>

where <formals specification> specifies the name and qualified type for each formal parameter,
and <result specification> specifies the qualified type returned by the procedure. Each formal
parameter is considered to be a local variable of the procedure; this variable is created at
invocation, and the actual parameter is bound to it. The <body> is then executed, and finally an

ob ject, whose type is the base type of the qualified type in the <result specification>, is returned.

For example, suppose a procedure P has type requirements
procedure P"(x: T1{f1,f2}) returns T2{gl}

and declarations

a

a assocnatlve-memoryJ 'R
L{_getval. insert] ot P
S p
- T .,
b | associative-memory](\
{getval} ot S

Tt

Figure 3a. The initial state.

a | assoclative-memory

{ {getval, insert}] i —" /)L_’)

o e B
b | associative-memory / -
(getval) -~)

Fi; ure 3b. Resultof be a.

a
a | associative-memacry O
{getval, insert] -
]

b | associative-memory
{getval} S

Figure 3c. Result of a «= b (disallowed).
Figure 3. Binding.

a: TI{f1£2,64)
b: T2{gl}

occur in the invoker of P. Then the statement b = P(a) is legal. The passing of parameters and
the return value is effectively simulated as follows: As part of the procedure invocation and before

execution of the procedure body, two locals, x and retval, are aeclared

- 14 -

x: T1{f1Lf2}
retval: T2{gl}

and the object referenced by the actual parameter is bound to x (x e=a) Execution of the body
terminates with execution of a return statement of the form

return e
This can be simulated with bindings

retval em e
ben retval

The procedure P is access-correc’ only If all of its bindings are legal; this includes the binding
retval sme but not X e=a nor be=retval. For retvale=e to be legal, the qualified type of
expression e must be > that of retval, i, that defined in the return specification. Thus if (in the

body of P)

y: T2{glg3}
1 T2{g2g3}

then return y Is legal but return z is not. Note that the access-correctness of P can be dete ‘mined

by local examination of its definition.

The invocation of P
b «= P(a)
is legal because the bindings of xe=a and b e=retval are legal. However, ¢ *=P(a), where

c: T2{glg3}, is not legal.

Procedure invocaticn is the mechanism whereby objects are created in the first place. There
e::ist a number of primitive data types (for example integer, boolean, array). The create operations
of these types provide objects of the type whenever they are invoked, and these objects are
returned with full rights. For the non-primitive, user-defined types the situation is analogous.
This has already been illustrated in the associative-memory example shown in Figure I; whenever
the makemem operation for associative-memory is invoked, it returns a new associative-memory
object with full rights. Thus the creator of an object obtains all rights to it. As the ob ject Is

passed from one access-correct procedure to another, certain rights may be removed, but iights are

oy

never gained. This 1s true because binding Is thz only method provided for transmitting access

paths to ob jects (references to ob jects) between procedures.

Amplification and Type-Modules
We have presented a rule for binding that regulates how users of an object can create new
access patis to ob jects in order to judiciously share them between procedures. Now we focus on the

type-module, the mechanism that is used to implement ob jects and accesses to ob jects.

Sometimes, in order for a useful function to be accomplished, it is necessary for the called
precedure to obtain more rights to the object than the caller had. When this occurs it is called
amplification [Jones73]. In our model, we permit amplification to occur at only one point: at entry
to a procedure implementing an operation defined in the type-module. There are always two types
associated with a type-module: the type being defined, which we will call the abstract type, and the

re; ‘esentation type, which is used to represent objects of the abstract type. Amplfication is the

mechanism that controls conversion between these types, thus permitting the procedures

implementing the operations of the type to obtair access to the ob jects’ representations.

A type-module defines the following information:

I. A list of the rights defined for objects of the type.

2. A list of the operations defined in the module that may be invoked by programs external
to the type-module. Note that the operations (defined by procedures) in such a module may
require as parameters ob jects of types defined elsewhere.

3. A description of the storage representation for ob jects of the type.

4. Procedures, some of which define the type's operations.
In Figure 4, a portion of the type-module for the associative-memory type is shown. The storage
representation for associative-memories is a record (similar to a PASCAL record [Wirth7l])

containing an integer to tell how large the associative-memory is, an integer to tell how full the

- 16 -

assoclative memory is, and two arrays of Integers to hold the names and the values.3 This is
declared by

rep~ record [size: integer! i}, full: integer{ail},
name: arraylinteger{ail}}{ali},
value: arraylinteger{all}}{all}] {ali}

which defines the representation type for this type-module, the abstract type is associative-memory.*
Note that all rights for every component of the representation are available for use within
procedures defined in the type-module (when an ob ject of type associative-memory is passed as an

actual parameter).

It is the procedures in a type-module that determine the behavior of ob jects of that abstract
type. To do so these procedures need to manipulate the representation of ahstract type ob jects
received as parameters. Thus procedures in the type-module require the right to convert an ob ject
between its abstract and its representation type. For example, the associative-memory insert
procedure takes an associative-memory object as its first parameter s. Inside the body of insert, s is
treated as type record (the associative-memory representation type) and the record components are

accessed.

The makemem procedure creates a variable r of the representation type, and constructs a new
record ob ject which is bound to r through the statement
r: rep e= recordcreate(size: n, full: 0, name: arraycreate(l,n), value: arraycreate(l,n))
The component labelled full of this record object is initialized to 0, the component labelled size is
initialized to the size desired by the caller, and the components labelled name and value are

initialized to new array ob jects having 1 and n as lower and upper bounds.> Makemem is defined

s. Data structures are discussed in Section 3.

4. If this mechanism were embedded in an actual programming language, specification of full
rights would probably be elided.

5. We have chosen to make array bounds information part of array ob ject creation to simplify
the «>mantics of data structures (see Section 3).

.

i

type-module associative-memory =
rights insert, change, getval, delete;
operations makeniem, insert, change, getval, delete;
rep = record [size: integer{all}, full: integer{all},
name: arraylinteger{allj}{all},
value: arr. ylinteger{allj}{all}] {all},
comment we have full rights to integer, array and recorc ob jects;

procedure makemem (n: integer{all}) returns associative-memory{allj =

coimment parameter n determines size of associative memory;
Al
r: rep e=recordcreate(size: n, full: 0, name: arraycreate(l,n), value: arraycreate(l,n));
return i

end makemem;
procxdure insert (s: associative-memory{insert}, n: integer{all}, v: integer{all}) =

If s.full = ssize or in(s, n) < s.full then signal inserterror;
sfull e sfull 1,

sname[s.full] e= p;

s.valuels.full] e= v,

end insert;
procedure in (s: rep{all}, n: integer{all}) returns integer{all} =

cominent in is an internal precedure,
comment returns index of s.name entry containing n, else returns s.full « I;

for i: integer{allje= | step | to sfull do
if s.nameli] = n then return i
return (s.full + 1),

end in;

end associative-memory

Figure 4. Part of the associative-memory type-module.

- 18 -

to return, not a record, but an associative-memory ob ject; the record object is automatically
converted to its abstract type associative-memory as part of the rewrn frcm the makemem

procedure.

The insert procedure can add a name-value pair to the associative memory only if there is
room, and If there Is no previous entry for this name. If these conditions are not satisfied, it
reports an error, using whatever error reporting mechanism exists in the language To determine
whether an entry already exists for this name it calls procedure in; this 1s an internal procedure of

the type-module, which is not accessible outside because it is not listed among the operations.

We have chosen to make conversion between abstract type and representation type be
automatic within a type-module;° type module procedures can reference abstract ob jects as if they
were of representation type and vice versa. In either case, "full” rights are available. Full rights to
the abstract type are those defined by the type-module; full rights to the representation type are
those specified in the rep type definition. Note that these conversions are purely changes in the
point of view of the compiler; no code need be executed to accomplish them. Note also that the

conversions apply only to the abstract type being defined by the type-module.

Type conversion is limited to the type-module. If an abstract type object could be converted to
its representation outside the type module, any operation of the type could be performed (via
manipulation of the ob ject representation), even If the right to perform that operation were not
present. By limiting this conversion to just the type-module, we guarantee that the access control
restrictions cannot be violated. Conversion from representation to abstract type is also limited to
the type-module, so that counterfeit ob jects, whose representation might not even aéree with the

representation type of the type-module, cannot be formed. .

It is worth noting the difference between the rights qualifications appearing in the heading of

6. A discussion of the semantics of these conversions may be found in [Liskov76]).

-19 -

a procedure defining a type's operations and an ordinary procedure. In the case of the ordinary
procedure, the rights qualification describes constraints on the procedure itseif and also on its caller.
For example, in
procedure P (s: associative-memorylinsert})

P can use only the insert operation on the assoclative-memory ob ject named by s (either directly or
through some procedure P calls), and the caller of P must have been able to insert values in this
object. In the case of an operation-defining procedure, the caller is constrained to provide
appropriate rights for an ob ject of the type, but because of amplification the operation itself has

no rights constraints.

Remarks
We have now described an access mechanism sufficient to control the sharing of many of the
kind: of objects of interest in programming. For example, suppose we define a type
employee-record, with operations (and rights) to read- job-category, write- job-category, read-salary,
and write-salary, among o'hers. Using the rules defined so far, we can define a procedure
procedure P (x: employee-record{read- job-category, write-salary})
which computes a new salary based on the employee’s job-category, but is unable to change the

Job-category, or to read the old sz iary.

We claimed earlier in this section that if all the bindings in a procedure were legal, then the
procedure was access-correct. We offer the following informal justification for this claim. The
binding rule is defined so that no new access rights can be obtained through a legal binding.
Therefore, the only way to obtain extra rights is by passing an object to some other procedure,
which somehow gives out the extra rights. There are two cases to consider here: a call on an
ordinary procedure, and a call on a procedure implementing an operation on the ob ject in question.
No extra rights can be obtained in the former case if the called procedure is access-correct. In the
latter case, extra rights can be obtained if the type-module is defined to permit this. So ultimately
the access-correctness of a system of programs rests on the type-modules in use: if the type-modules

are trustworthy, no extra rights can be cbtained, but If not, access control can be violated.

-20 -

The fact that access control ultimately rests on the correctness of programs led to our
restricting amplification to type-modules This restriction ensures that the programmer knows
exactly where to look to determine whether his programs will work as he desires. If, in additien,
type modules provide as few operations as are necessary, then the amount of code to be examined
is also minimized. A less stringent resiriction on amphfication, for example, to permit procedures
outside the type-module to obtain additional abstract rights, would make the programmer’s task
much more difficult. Clearly, no power is lost by our restriction, since extra operations may be

added to a type-module -- at the cost of the additional code to be inspected

We have been careful never to state that rights are identified with operation names. In our
examples so far, they have been used in precisely this way We expect this to be usual. However,
there are cases where this is not appropriate.

I. Some operations, most notably create operations like makemem for associative- memorles,
take no parameters of the type being defined; thus these operation names have no such
corresponding rights.7

2. Some operations take more than one object of the type being defined, and require
different rights for each ob ject. For example, suppose file rights include "merge” and
"mergeto”; and the file merge operation requires the following rights

procedure merge (f: file {merge, mergeto}, g: file {merge})

The procedure merges the contents of files f and g; f contains the result of the merge, but g
is unchanged. Note that the procedure merge requires a special right to "mergeto” its first
parameter where the results are to be placed.

It seems premature to make fixed rules about the relationships between operation names and rights.
Practice will determine what is convenient. However, we expect a subset of the operation names
will have corresponding rights. In unusual cases there will exist additional rights different from
operation names. These will occur when operations treat parameters of the type being defined in

different ways.

7. We assume that the right to use a type implies the ability to create ob jects of that type. This
assumption is discussed in Section 1.

-2 -

3. SBHARING OF STRUCTURED OBJECTS

The access control rules described 1n the previous section provide control over the sharing of
ob jects that are passed directly from one procedure to another. However, they are inadequate to
control sharing of ob jects passed indirectly -- through the medium of another object. For example,
suppose a number of procedures share a data base of empioyee records. Our rules can be used to
control the sharing of the data base as a whole, it is a simple matter to grant read-only access to the
data base. However, there is no way to also control access to the individual employee records stored

in the data base.

In order to discuss this problem further, we must introduce a notation which permits us to talk
abcut both the structure as a whole (the data base) and the elements of the data base (the employee
record:). The data type to be described is "data base of employee records” which is similar to data
types already existing in programming languages such as "array of integers”. The notation we will
use is the following:

<data structure type name>[<element type names>]
Examples are

data-base[employee-record] c
array[integer]

Both the data structure type name and the element type name(s) are the names of types, and so all
can be qualified. To specify qualified structured types we will use the notation

TIQI...QnY{rl,..rm}
where T is the type of the siructure {(for instance array, record or data-base) for which rights
rl,..,rm are defined, and Q},.,Qn are the qualified types of the n kinds of elements in the structure.
In the following discussion we will limit ourselves to structures containing a single kind of element;

this simplifies the discussion without loss of generality.®

8. Limiting what appears between the square brackets to just types is another simplification. It
is easy to permit other compile-time-known quantities to appear between the brackets (for example,
the selector names for components of records); an extension to quantities not known until execution
time (for example, array bounds) can also be made, but at the expense of runtime checking.

22 -

Suppose that we wish to wiite a program, P. to scan a data base and calculate for each job
category the average age of employees in that category The program is not permitted to modify
either the data base as a whole, or any of the employee records in the data base. In addition, there
are a number of items In the employee records which may not be read, for example, salary
information. Assume the righ's to a data-base include 'read’ and 'update’, and the rights to
employee-records include . date, read- job-category, write-job-category, read-salary, and
write-salary. Further assume that all these rights permit the use of operations of the same name.
Then the access control needs of procedure P to the data base can be expressed:

procedure P (d. data-bace [employee-record {birth-date, read- job-category} }{read})
Another legitimate data-base type, one which might be used by a caller of P, 1s

e: data-base(employee-record{birth-date,rcad-Job-category,read-salary} J{read.update}
We want the invocation P(e) to be legal Intuitively, what we want s a binding rule that permiuts a
structured ob ject to be bound to a variable provided that the rights to the structure as a whole, and
to the elements of the structure, do not iacrease. However, a straightforward extension of our

binding rule, permitting the binding d = e, is not possible for reasons explained below.

Just as with unstructured data, 2 data structure such as array or data-base may be
characterized by a group of operations. For example, array operations of interest are arraycreate
(which creates a new array of a given size), fetch (which fetches the ith element of the array) and
update (which updates the ith element of the array).® However, a data structure is not a type; rather
it is a set of types, containing a different type for each possible combination of element types of the
structure. Thus, array is the set of types containing among other elements

arraylinteger]
arraylstring]

The types in this set of types differ from one another only in the kinds of elements the arrays

9. In the associative-memory example shown in the preceding section (Figure 4), we used the
notation ali] to stand for the invocation of fetch(a,i), and the notation ali] ®=x to stand for the
invocation of update(a,i,x).

_23-

contain. Each type (in the set) 1s associated with a group of array operations that are specialized to
work for the particular element type by an appropriate seiection of types for their input and output
parameters. For example, the parameter and return types of the operations for the type
arraylinteger] are

procedure arraycreate (Ib, ub: integer) returns arraylintegerl{all}
procedure fetch (a: array(integer]{fetch}, i: integer) returns integer
procedure update (a: array[integer){update}, i: integer, s: integer)

Clearly it would be an error to attempt to perform an arraylinteger] operation on an array(string]
object or vice versa. The operations for the two types differ in their input and output type
requirements. In fact, the information about the element types of a particuiar data structure type is

contained in the type requirements of the associated group of operations.

The above discussion has not taken into consideration any special requirements introduced by
access control. In fact, all that access control introduces is a change in the possible element types of
a data structure; in a language with access control, data structure element types may be quaiified.
Although this may seem like a very small difference, the consequences are profound. It means that

array[T{f1.f2}]
and

array[T{fI}]
are different types and it would be just as iilegal to apply an operation of type array[T{fl}] to an
ob ject of type array[T{f1,2}] (or vice versa) as it is to apply an operation of type arrayiir..eger] to
an object of type array[string). Therefore, it is not possible to make the desired binding d e= e

(discussed above) because it would violate type-checking.'®

10. The semantics of data structures and the motivation for this restriction will be discussed in a
subsequent paper.

.21-

Extended Rule of Binding

Our exteuded rule of binding provides the desired access-control behavior, but avoids the
type-checking violation described above. |t permits a procedure to state precisely what limited
rights it requires to all ob jects, including data structures and their component ob jects, and the
procedure is restricted to exercising only those rights for which it exphaitly stated a requirement.
However, the extended binding rule does not require that the type of a variabie be completely
knewn. It allows the type to be partially specified. When this occurs, the precise type of a data
structure ob ject referenced by the variable is not known by the compiler. Nevertheless, the

comptler can ensure that no erroneous assumptions are made about the type of a data structure

ob ject.

What is known about the type of a data structure ob ject is that it contains at least those rights

to elements requirea by the program. Consider the example of a procedure G which accepts as a
parameter an array of elements of type T with fl and f2 rights, with full rights to use the array. A
call to G will be legal anly if it is passed an ob ject of type

array[R){all}
where base(R) = T and rights(R) 2 {f1f2}. Thus R » T{f1LF2} We have just expressed exactly
what is known inside G about the element type of the array. The notation actually used 1s

procedure G (a: array[7R > T{fI,f2) J{ali))
The '?" emphasizes that type R it not completely known when G is compiled; we will rzfer to types
like R as types. The notation

> T{f1£2}

expresses exactly what is assumed about R inside of G.

For simplicity, we limit the introduction of ?types to formal parameter specifications In
procedure headings. The key to understanding ?types is to understand what assumptions are made
about such types Inside a procedure which uses them. The assumptions made are very

straightforward:

S T e R ——

=

- L Ee . addin o dbioii bk Rug—" ——y
g . . o el TR LN Y] Cp— n R PR SR 1 n—
E k. e b el e ST LTOTL, ¢ N R R e BT I R ——— e

L

- 25 -

I. Every use of a particular ?type name is assumed to stand for the same real type.

2. Although this real type is not known inside the body of the procedure, a set of possible
candidates for the real type is known; for example, assuming the rights for T are {f1f2,f3},
then inside of G it Is known that

R ¢ {T{f1LE2]. T{LI2.03}}

The binding rule 1s defined so that no extra rights can be obtained no matter which member
of the set is associated with the ?type in the current invocation

3. Two ?types with different names are not assumed to be mparable inside the procedure,
even if they are drawn from the same set.

The association of actual type values with ?types is made at procedure invocatior. The
association must be done ‘n such a way that the three assumptions discussed above are satisfied,
only in such a case is the invocation considered legal. The most important is assumption 1, since it
implies that even if a ’type name appcars more than once in the procedure heading, it is still
necessary to associate just one value with it. In fact, we require that a heading contain exactly one
defining instance of a ?type name. Any other use of the ’type name must obey the constraints

stated in the definition. An example is:

procedure H (a: array[7R > T{f1.{2} J{alt}, b: array(?S > T{f112] Jall}, t ?S) returns R

An invocation of a procedure having tjpes fur some of its formal parameter types is checked
for legality as follows. Each rype is matched with the type of the actual parameter to be passed in
the position where the ?type definition appears. This match can be done only if the type of the
actual satisfies the constraints on the ?tyg ' thus ensuring that assumption 2 holds. Next, the
declarations for the formals, and for the return value, retval, are rewritten, replacing the ?types
with the matched type values. Finally, the actuals are bound to the formals; If the bindings dre
legal (according to the rewritten declarations), and the use of the return value is legal, the

invocation is legal.

For example, suppose the following declarations appear in the invoker of H:

. T = v sepme s DU

Ll i S ke L ko i

ﬁ

-26_

x: array[T{f1,£2.£3}){all}
y: array[T{f1,f2}){all}

u T{fLF2.63)

v T{fL2)

The invocation u «= H(x, y, u) causes ?R to be associated with T{f112,f3}, and ?S to be associated
with T{f1f2}] Then the formal declarations are rewritten:

a-array[T{f1£2,(3}){all}
b.array[T{fif2}){ali}
t: T{fif2)
retval: T{f1,f2,f3}
and the invocation is legal since all the binuings of actual to formals, and of retval to u, are legal

(as will be shown below).

Note in the above invocation that the three assumptions are satisfied, and that R and ?S are
associated with different type values. For this jnvocation of H,
’R > 7S
However the legal invocation v &= H(y, x, u) would cause
’S > R

and, therefore, assumption 3 is necessary.

Within a procedure body, Ptypes may be used to declare new variables in the usual way. For
example, inside H,

c: array(?S]
v: ’R

are legal declarations.

Now we are prepared to extend our rule of binding to cover the additional cases introduced by
data structures and ?types. We consider the binding
ve= e
where Tv and Te are the types of v and e, respectively; we wish this binding to be legal, as in
Section 2, if we are certain that Te v. In the case of data structures, this is achieved by

applying the rule of Section 2 directly: Te and Tv must be identical up to the rights on the

Y & T I P T PR, Jrrarrs 1 e ———— * f7 1 T VR T — |2 "
wmww_wm o - Tt Rt R L oLl ol e i LA ot - R e L e e s e R

.97 -

structure as a whole. For example, y o= x is legal i’

x: array(T{f1.12}){all} .
y: array[T{f1f2}]{fetch}

or if
x: array[?S){ail}
y: array[?S]{fetch}

For bindings in which Te and Tv are unstructured but involve ?types, we make use of our
intuitive understanding that a type can stand for any member of a set of types. Thus a binding
involving ?types is legal only if it is legal no matter which member of the set is substituted for the
?type. For example, if

y: 'R > T{f1f2}
then x &= y is legal if
x: R
or If T{f1£2} > the type of x (eg, x: T{f1}). On the other hand, y e= x is legal only if

x: 'R
or

x: T{ail}
Discussion

The correctness of the extended binding rule rests on the correctness of the binding rule
shown in Section 2. The ?type notation permits a name to stand for a set of types; thc compiler can
construct this set of types from the type definition. Whenever a Ptype takes part in a binding, the
comnpiler applies the rule of section 2 in the most stringent possible way, by requirir,g that the rule

work for all types in the set.

The usefulness of the extended rule is demonstrated in Figure 6, which shows the
im.plementation of a procedure, agesort, to sort an array of employee-records by employee age, using
only birth-date access to employee-records. The procedure uses an array operation, size, to

determine the current size of the array. A legal invocation of this procedure would be, for

dila ¥ e M T |k L
. o »: el < S i -

- 928 -

example, agesort(b), where

b: arrayl employee-record{all} Jiall}

A sorting example was chosen because sharing of the object being sorted is necessary, and
because 1t must be possible to read an element from the ob ject being sorted, and later to write that
element back into the object. Observe how the use of 7R enables this activity (the interchange of

the ith and jth elements of the array).

procedure agesort (a: array[?R > employee-record{birth-date} J{fetch,update, size}) =

coinmnent agesort sorts an arraylemployee-record] by employee age, using a bubble sort;

index: integer{all &= size(a);

repeat
bound. integer{all} = index,
index &= I,

for) inirger{all} =1 step | to bound-i do
if birth-date(fetch(a, j)) > birth-date(fetch(a, j+I))

then begin
temp: PRe= fetch(a, j+i);
update(a, j+l, fetch(a, j));
update(a, j, temp);
index &= |;

end

until index = I

return;

end agesort

Figure 8. The agesort procedure.

-29-

4. COMPARISON WITH A DYNAMIC MECHANISM

We began the work reported here having observed thrt Algol-like scope rules were insufficient
for controlling the use of shared data. We had also observed that the access crrtiol protection
mechanisms available in operating systems did provide useful controt over sharing of d:ra. Could
an analogous facility be of use in languages? The answer is affirmative -- even (nore so ti:an we
expected in that access control restrictions may be enforced at compile time. The next question is:
how does enforcing access control using compile time checking impact the power of the ianguage
facility? To address this question, it seems appropriate to ask where and why language access

control and operating system access control facilities are similar and different.

The language mechanism we describe is based on an access control facility defined in terms of
capabilities. In a capability-based operating system all data is recorded in objects. Each ob ject has
a type that determines the accesses applicable to that ob ject. A process can reference an ob ject only
by exercising a capability for it. Each capability specifies a unique object in the system and the
accesses permitted on that object. We found that in an object-oriented language it was useful to
think of a variable as a capability. Both are essentially "access paths™ to ob jects, useful for

exercis.ng just those rights named in the capability or the variable.

To go into greater detail we compare our language facility (o the specific capability-based
protection mechanism found in the Hydra operating system [Jones75, Wulf74}:
1) Both facilities are object-oriented. Users can create arbitrary numbers of abstract ob ject types
and specify the accesses appropriate to objects of the type. Operations on ob jects are implernented
as procedures. Most though not all extant systems other than Hydra limir access control to a small
number of types of objects, mainly segments or memory blocks. In Hydra new types can be created

dynamically; in the language types are user defined and are known at compile time.

We have already noted that both the languare and the operating system facilities control
access to an object on the basis of the access path (through the variable or capability). In the

language facility, variables are all known at compile-time and their use is controlled by the scope

.90 -

rules. Though the o', ject bound to a variable may change, the type of the object and the rights
permitted by access through the variable are fixed and known. In contrast, in the system the
capabihity associated with a name may change dynamically, permitting arbatrary types of ob jects to
be accessed. No restrictions on the capabilities associated with a name are enforced by the system

access control faclity

2) Only operations applicable to an ob ject (based on its type) can be performed on the object. In
the language facility, such operations are implemented as procedures defined in the type-module.
Experience with Hydra has shown that its access control mechanism encourages programmers to
construct “subsystems” which are analogous to type-modules in a number of ways: Each subsystem
defines a new abstract type (occasionally several new types) along with the accesses applicable to

ob jects of that type and the procedures that implement the operations of the type.

3) To embed our access control facility in a language requires determining a policy for controlling
the scope of type modules. This policy specifies in which program segments variables of the type
can be declared. If variables of the type can be declared, the policy specifies which operations
defined by the type module can be invoked. Whether invocation of such an operation fails due to

insufficient rights for actual parameters ob jects is a different question.

.ln Hydra, access to a type's operations is controlled using the access control mechanism. A
procedure itself is an object and one access defined for procedures is “call” access. Thus a user
must obtain “call” rights to a procedure in order to invoke it at all. Similarly types are also ob jects
in Hydra. To create a new instance of the type a user exercises the "create” right to that type. So
in Hydra use of types and operation defining procedures are controlled by careful disbursement of

“create” rights to type ob jects and "call” rights to procedures.

So far we have not discussed the kind of programming language in which our type-modules
and procedures would be embedded but we need to do so to consider the policy iur type module
usage. One possibility would be a language like Pascal or Algol 60 in which the compiler compiles

an entire program text, including the texts of all type-modules and procedures, at one time. Here,

REETa — - PR Sy T

e Ll S S R e o fdoy

-3 -

scope rules determine the blocks in which a type module is known. Another, more promising,
possibility is a modular language in which type modules are separately compiled to be stored in a
data base. At compile or load time external modules are found in the data base together with their
specifications; the compiler can use the specirications to determine the types of the formal
parameters so that access control consistency can be checked at compile or load time. Accessibility
of a particular type module would be determined by the policy implemented by the language
Support system which maintains the data base of compiled modules. For this presentation we have

tacitly assumed the policy that all or nothing of a type module was available for use

4) Both the language and the operating system access control facilities employ amphfication. Here
there is a substantial difference between the two facilities. In the language facility, amplificatior,
of rights to an object occurs (automatically) only at entry to a procedure defined in the ob'ect's
type-module. This restriction is motivated by the desire to localize the code that determires the

behavior of ob jects of a type to the type-module.

Amplification in Hydra is not restricted to Operation invocation; it can also be performed
explicitly by a user (having the appropriate "amplhify" right). However, subsystem builders
voluntarily adopt the same sensible strategy discussed for the language facility: when a subsystem
Creator creates an abstract type, he is given the right to "amplify”, that is to increase, the rights 7or
any object of the type. Note that he is permiited to amplify access to any object of the the type,
whether it exists yet or not. Because this is a very powerful ability, it is closely held. In general,
only procedures Implementing operations applicable to the type are endowed by the type

(subsystem) creator with the ability to perform such amplification.

Another contrast between our language notion of amplification and that of Hydra is one of
degree. In the language, amplification always yields full rights to the parameter ob ject and to its
representation. In Hydra, amplification can be tailored to the different requirements of the
subsystem procedures. Each procedure can be defined to gain (via amplification) only those

additional rights required within that subsystem procedure. Though the finer control introduced

.32-

by tailoring may be conducive to enhanced correctness and protection, we believe that it would
introduce excessive complexity of expression. We ‘elt that brevity of expression took precedence

for the language faciiily.

5) The Hydra and language access control farilities diverge most strikingly in their treatment of
structured objects. Using the language facility, once a structured ob ject 1s created the types of its
component ob jects are fixed. The semantics of the extended binding rule ensures that no violation
of these types is possible. However, restricted access to component ob jects of a data structure can
be accomplished through the use of ?types. In Hydra, ob jects contain data and capabilities. Ob ject
A is considered a component of object B if B contains a capabuiity for A. Hydra's access control
facility does not enforce restrictions on the type or number of ob jects that can be components of
other objects In fact, the system access control facility provides a variety of operations that can be
explicitly invoked to alter objects. Capabilities can be transported from one ob ject to another,
replicated and destroyed. (Destruction of the last remaining capability for an object implies
destruction of that object) Of course, invocation of such operations is controlled via capabilities.
Hydra provides mure dynamic power than the language facility and its access control mechanism
alone is not sufficient to accomplish the automatic restricted access to component ob jects provided
by the language facility using ?types. However, as usual, the acditional restrictions can be

implemented as user programs to provide the control dynamically.

6) As noted above, Hydra objects contain both data and capabilities, and the access control
operations can be explicitly invoked by the user to move capabilities out of one ob ject into arnother.
Thus Hydra is a suitable facility for long term storage and retention of capabilities. To illustrate
we consider a file system. In most cases a file is defined as a sequence of pages or blocks holding
data. In Hydra, a file could be a sequence of ob jects of arbitrary type, represented as a sequence of
capabilities. Such a file system is used very much the way we use bank safety deposit boxes, as
receptacles for entities whose existence we wish to assure and whose access we wish to control. The
bank that provides safety deposit boxes has no need to know what is kept in safet” deposit boxes,

and does not enforce any control over the type of entitles kept in them.

4

-93 -

To ensure the continued existence of any ob ject a user wishes to retain between executions of
a program or between terminal sess:ons, the user places a capability for it in the Hydra file system.
Later when a user retrieves sometting from the file system he does not have a string of bits he can
manipulate arbitrarily, he has a structured ob ject on which he can only perform accesses applicable
to the ob ject’s type. Note that this is in contrast to che language's stricter access control rules which
restrict a program to accessing only components of an ob ject if the types and accesses are known at
compile time. in order to build a file system in our language, we require dynamic checking of the
qualified type of an object retrieved from a file system. Such a dynamic check ensures that a
retrieved object is of the type expected by the compiler. Such dynamic checks seem very
straightforward and could be generated by the compiler where appropriate, using a union
discrimination mechanism such as the conformity relations in Aigol 68 (Lindsey73) or the “typecase”

coastruct in CLU [Schaffert75).

In the above discussion we have shown that the language facility we propose and
capability-based operating systems are quite similar in structure. Though the system which
enforces access control dynamiczlly seems more powerful than the language (using compile time
checks), we found that many features are used in similar ways. Initially we expected that we could
not do all protection checking at compile-time in the language and that we would have to embed
some sort of escape mechanism to permit run-time checking. The requirement for such an escape is
analogous to the need for type unions in a strongly typed language. We assume type unions to be
available in the language to program applications like the file system discussed above. Whether
anything further is required is an open question. We now suspect that type unions are a sufficient

addition.

A system like Hydra and the language provide complementary facilities. The system run time
checking could be used where dynamic checks are unavoidable. It would be possible to rely on the
compiler to perform static checks, thus avoiding storage of unnecessary type information, and
execution of unnecessary instructions, or the system could be used as a backup to the compiler with

dynamic checking ensuring the correctness and reliability of the compiler and to some extent the

RES "

O P T i s L — T

g R B e e e L e T e i B oL | —m
. = e

- 94 -

hardware. In addition the system would provide support for the storage of already compiled type
modules and perhaps other user created ob jects. Finally, we believe the user will find it a pleasure
to program and to execute in the consistent homogeneous environment which results when

language and operating system are structurally similar.

e e ———

[TR ey I N TR ST S Y e (M) | pap— g ox 1, g ST

oy T g 1 —

- 95 .

6. DISCUSSION

A ma jor premise of this paper is that it 1s important for programmers to express restrictions
on the manipulation of abstract objects and to express these restrictions precisely, in abstract terms
meaningful to the obj:cts. We have proposed an access control facility suitable for extending
ob ject-oriented languages to achieve this goal Access control is provided using variables, ob jects,
type-modules and binding. At any point in the execution of a program the variables that can
legally be named provide access pathis to the ob jects that can be manipulated. Different programs
(possibly written by different users) may share the same object; each has a different variable
bound to the shared object. Thus, control of the manipulatior of an object is based on the

variable (the access path) used to identify the ob ject.

The access control facility definition includes a binding rule which determines how variables
can be bound to objecis and, thus, how access to a new ob ject can be obtained. This binding rule
is based on several premises:

l. Ob ject sharing is desirable.

t

2. The acquisition of access Paths to an ob ject should not permit a user to gain additional
access to that object, i.e, programs should be "access-correct”.

3. Only operations applicable to an object (as determined by its type) should be performed
on it.

4. Access control should be checkable at compile time.
Control of access to both unstructured and structured ob jects is provided; for structured ob jects,

access to the components can also be restricted.

We believe that a mechanism such as ours is a worthwhile addition to a language used for
writing applications programs to run on modern operating systems; the systems themselves would
also benefit from being programmed in such a language. Modern systems enable different users
(often mutually suspicious users) to share data in a controlled way. Our mechanism permits the
real-world activity of controlled sharing to be expressed in the programs which are doing the

sharing. In addition, the static checking we provide not only eliminates run time access errors, but

ﬁ

I gy v L gy T R —— kS L e i ¥ —_— eI R TR ——— W

- 96 -

raises the possibility that controlled sharing can be accomplished with lower cost than is currently
possible. For the present, it is safer to retain dynamic checking, to back up the compiler (which 1s a
complex and probab.y urverified program), to execute the programs which were not processed by
the cc piler, and, if appropriate, to enhance reliability with (possibly duplicate) run-time access

control checks.

Of course, a static mechanism like ours can be considered as a replacement for a dynamic
mechanism only if no useful programming power is lost in the process. We have considered this
question in Section 4, where we compared our mechanism with the dynamic access control
mechanism present in the Hydra system to determine whether the extra flexibility in the system
mechanism permitted useful programs to be written that could not be written in the language. Our
analysis indicates that sensible use of the system mechanism leads to program structures very
similar to those in the language. In fact, our mechanism appears to be superior to the dynamic one,
not only because static detection of access control errors is preferable to dynamic detection, but
because certain types of restricted access control (restricted access to elements of a shared data
structure) can be provided in the system only at the cost of the additional programming complexity.
However, we recognize that there are cases where an escape to dynamic checking is necessary.
More study is required to establish where such escapes are needed and how they should be
provided in a programming language. An escape is needed to build the file system; here we
assume the existence of run-time access control checks that are analogous to those needed in the

presence of type unions.

The ob jective of an access control facility is to be able to restrict the access to ob jects according
to some policy. One should then ask If an access control facility allows one to write access
restrictions so as to implement policies of Interest. This is a difficult question in language access
control just as In systems. One accepted policy or guideline is the “need to know™ it should be
possible to implement programs so that an object Is accessible in only the ways appropriate and
necessary to the function currently being performed. Our facility permits tailored accessing

environments to be designed and implemented. In fact, "need to know" Is the policy which

L _a il _a gl L
A e ——

underlies our access control mechanism; each Program states what rights it needs, and the
mechanism ensures that n- additional rights may be obtained. We do not know whether the
language mechanism could support other sensible access control policies. However, this question is

an unresolved one for dynamic access control mechanisms as well

enables the programmer to declare restrictions on the accessing behavior of hjs programs, and these
restrictions are enforced by the compiler. we believe this will lead to benefits similar to those
Provided by strongly-typed languages: the mechanism permits ans encourages prograimmers to
Structure programs so as to reduce the space of possible errors. Enhanced ease of producing correct

Programs can be expected as a result.

Lo

- 98 -

ACKNOWLEDGEMENTS

We would like to express our agpreciation to our colleagues, particulatly those working on
CLU and Alphard whose criticism and observations have helped us prephre this paper.

REFERENCES

[Dahi72) Dahl, O] and CAR. Hoare, Hierarchical Program Structures. Structured
Programming, (d Dahl Dijkstra, and Hoare) Academic Press, 1972

(Dennisé6] Dennis,). and EC van Horn, Programming for Multiprogrammed Computations.
CACM 9, 3, 143-155 (1966) .

[Jones73) Jones, A., Protection in Programined Systems. Ph.D. thesis, Carregie-Mellon University,
1973

[Jones75] Jones, A. and W.A. Wulf, Toward the Deslgn of a Secure System. Software Practice
and Experience, V5, 321-33€ (1975)

(Lampson7l) Lampson, B.W. Protection. Proc. Fifth Annual Princeton Conference on
Infor:natlon Sciences and Systems, Princeton University, 437-443 (1971)

{Lindsey?3] Lindsey, CH. and SG. van der Meulen. Informal Introduction to Algol 68. North
Hol'and, Amsterdam-London, 1973

(Liskov76] Liskov, B, An Introduction to CLU. Computation Structuies Memo No. 133,
Laboratory for Computer Science, Mass. Institute of Techno'ogy, Cambridge, Mass., 1976

[McCarthy62) McCarthy, J. et al, LISP 1.5 Programmer's Manual MIT Press, 1962

[Schaffert75] Schaffert, C.. A. Snyder and R. Atkinson, C'1 Reference Manual Compu’>.con
Structures Group, Laboratory for Computer Science, Mass. Institute of Technology.
Cambridge, Mass, 1976

(Sturgis74) Sturgis, H.E, A postmortem for a time sharing system. Ph.d Thesis, Universi(y of
California at Berkeley, 1974

[Wirth71] Wirth, N, The Programming Language PASCAL. Acta Informatica, 1, 335-63 (1971)

(Wulf74) Wulf, W. A, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson and R. Pollack.
HYDRA: The kernel of a multiprocessor operating system. CACM 17,6, 337-345 (1974).

(Wulf76) Wulf, W. A, R. London and M. Shaw, Abstraction and Verification in Alphard, to be
published.

UNCLASSTFIED

SECURITY CLASSIF'CATION OF THIS PAGE fhan D"'U; Fntered)

|/, REPORT DOCUMENTATION PAGE B DAl O I St

T, XEPBRT NUMBER """ 2. GOVT » . CESSION NOJ 37 RECIPIENT'S CATALOG NUMBER

0% -TR- 76~ 9886 /.

n;:"."ITLE (;nd Sdbtllle) (il -'_)y TYPE OF REPORT & PERIOD COVERED
: e T [SO ,
! (AN éCCESS QONTROL‘FACILITY FOR PROGRAMMING 3 / Interim . }}Lé7{/ / !
< LANGUAGES,' : L ‘ - 6 PERFORMING ORG, REPORT NUMBER
7. AUTHOR(S)) 8. CONTRACT OR GRANT NUMBER(s)
/ { ! . i -) 3
"Anita K./Sones dad Barba;g_H,/{iskov «Zﬂf Y
Carnegie-Mellon Univ. Mass. Institute of Techno ZL7F4462¢-73-C-567§7<F)
TPERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT, F’ROJECATJ,(TASK
Carnegie-Mellon University AREAL WORKUﬂ;/ﬂgg?§R§
Computer Science Dept. GllOqul K F ‘
Pittsburgh, PA 15213 AQ 2466 Leeten ':ﬁﬂffv
Il, CONTROLLING OFFICE NAME AND ADDRESS 2. REPQRT RAIE - ‘
Defense Advanced Research Proiects Agency /][\ May 976] i
1400 Wilson Blvd T I YT 7{“‘737""' g
Arlington, VA 22209 29 /*ijﬁ? ;\'l

T4, MONITORING AGENCY NAME & ADDRESS(/f difterent from Controlling Oftice) 1S. SECURITY CLASS. (of this repoHi

Air Force Office of Scientific Research (NM) UNCLASSIFIED
Bolling AFB, Du 20332

1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STAT:MENT (of the ebstract entered in Block 20, if diftferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

i

Y

20. ABSTRACT (Continue on reverse side If necessary and identity by block number) Controlled sharing of informa-

tion is needed and desirable for many applicationms. Access control mechanisms
exist in operating systems to provide such controlled sharing. However, program-
ming languages currently do not support such a facility. This paper argues that
to enhance software reliability programming languages should support controlled
sharing of information; the paper illustrates how such an access control facility
could be incorporated in a programming language. The mechanism described is
suitable for incorporation in object-oriented languages which permit the defini-
tion of abstract data types; it is defined in such a way as to enable compile

+ime checking of access contr01?~i

FORM ;
D EDITION OF | NOV 65 IS o;\sou-:n-: — 1Fa

D a7 1473 A UNCLASSIFIED ¥ =)5/, 7
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entere({/[7

R e EE— - etk TR ™ E r S "‘r

4
/]

T

